奥数网 奥数福州站 > 奥数题库 > 六年级奥数题及答案 > 正文

第十讲 溶液问题

来源:福州奥数网 2011-08-22 15:04:48

一碗糖水中有多少糖,这就要用百分比浓度来衡量.放多少水和放多少糖能配成某一浓度的糖水,这就是配比问题.在考虑浓度和配比时,百分数的计算扮演了重要的角色,并产生形形色色的计算问题,这是小学数学应用题中的

  一碗糖水中有多少糖,这就要用百分比浓度来衡量.放多少水和放多少糖能配成某一浓度的糖水,这就是配比问题.在考虑浓度和配比时,百分数的计算扮演了重要的角色,并产生形形色色的计算问题,这是小学数学应用题中的一个重要内容.

  从一些基本问题开始讨论.

  例15 基本问题一

  (1)浓度为10%,重量为80克的糖水中,加入多少克水就能得到浓度为8%的糖水?

  (2)浓度为20%的糖水40克,要把它变成浓度为40%的糖水,需加多少克糖?

  解:(1)浓度10%,含糖 80×10%= 8(克),有水80-8=72(克).

  如果要变成浓度为8%,含糖8克,糖和水的总重量是8÷8%=100(克),其中有水

  100-8=92(克).

  还要加入水 92- 72= 20(克).

  (2)浓度为20%,含糖40×20%=8(克),有水40- 8= 32(克).

  如果要变成浓度为40%,32克水中,要加糖x克,就有

  x∶32=40%∶(1-40%),

 

 

 

 

 

  例16 基本问题二

  20%的食盐水与5%的食盐水混合,要配成15%的食盐水900克.问:20%与5%食盐水各需要多少克?

  解: 20%比15%多(20%-15%), 5%比15%少(15%-5%),多的含盐量

  (20%-15%)×20%所需数量

  要恰好能弥补少的含盐量

  (15%-5%)×5%所需数量.

  也就是

 

  画出示意图:

 

  相差的百分数之比与所需数量之比恰好是反比例关系.

  

   

  答:需要浓度 20%的 600克,浓度 5%的 300克.

  这一例题的方法极为重要,在解许多配比问题时都要用到.现在用这一方法来解几个配比的问题.

  例17 某人到商品买红、蓝两种笔,红笔定价5元,蓝笔定价9元.由于买的数量较多,商店就给打折扣.红笔按定价 85%出售,蓝笔按定价 80%出售.结果他付的钱就少了18%.已知他买了蓝笔 30支,问红笔买了几支?

  解:相当于把两种折扣的百分数配比,成为1-18%=82%.

  (85%-82%)∶(82%-80%)=3∶2.

  按照基本问题二,他买红、蓝两种笔的钱数之比是2∶3.

  设买红笔是x支,可列出比例式

  5x∶9×30=2∶3

 

  答:红笔买了 36支.

  配比问题不光是溶液的浓度才有的,有百分数和比,都可能存在配比.要提请注意,例17中是钱数配比,而不是两种笔的支数配比,千万不要搞错.

我要投稿