奥数网 奥数福州站 > 奥数题库 > 二年级奥数题及答案 > 正文

第十二讲 仔细审题

来源:网络资源 文章作者:匿名 2011-07-28 15:09:31

解数学题很关键的一步是审题.如果把题目看错了,或是把题意理解错了,那样解题肯定是得不出正确的答案来的.什么叫审题?扼要地讲,审题就是要弄清楚:未知数是什么?已知数是什么?条件是什么?有一种类型的数学题叫

  解数学题很关键的一步是审题.如果把题目看错了,或是把题意理解错了,那样解题肯定是得不出正确的答案来的.什么叫审题?扼要地讲,审题就是要弄清楚:未知数是什么?已知数是什么?条件是什么?

  有一种类型的数学题叫“机智题”.在这一讲要通过解这种题体会如何审题.

  例1 ①树上有5只小鸟,飞起了1只,还剩几只?

  ②树上有5只小鸟,“叭”地一声,猎人用枪打下来1只,树上还剩几只?

  解:①5-1=4(只),树上还剩4只小鸟.

  ②对这一问,如果你还像上面那样算就错了.正确地算法应该是:5-1-4=0(只)


 

  为什么呢?听到“叭”地一声响,其他4只会被吓飞的,这叫“隐含的条件”,在题目中虽没有明确地说出来,解题时却要考虑到.

  例2 要把一个篮子里的5个苹果分给5个孩子,使每人得到1个苹果,但篮子里还要留下一个苹果,你能分吗?


  解:能.最后一个苹果留在篮子里不拿出来,把它们一同送给一个孩子.这是因为“篮子里留下一个苹果和每个孩子分得一个苹果”这两个条件并不矛盾(见图12—3).

  例3 两个父亲和两个儿子一起上山捕猎,每人都捉到了一只野兔.拿回去后数一数一共有兔3只.为什么?


  解:“两个父亲和两个儿子”实际上只是3个人:爷爷、爸爸和孩子.“爸爸”这个人既是父亲又是儿子.再数有几个爸爸几个儿子时,把他算了两次.这是数数与计数时必须注意的(见图12—4).

  例4 一个小岛上住着说谎的和说真话的两种人.说谎人句句谎话,说真话的人句句是实话.假想某一天你去小岛探险,碰到了岛上的三个人A、B和C.互相交谈中,有这样一段对话:

  A说:B和C两人都说谎;

  B说:我没有说谎;

  C说:B确实在说谎.

  小朋友,你能知道他们三个人中,有几个人说谎,有几个人说真话吗?

  解:这是并不难的一道逻辑推理问题.怎样解答这个问题呢?有的人一定会列成下面形式的表格,想由此把所有的可能情况都判断出来,认为这样就可以得到答案了.

  人 说谎 说真话

  A _____ _____

  B _____ _____

  C _____ _____

  但是,如果你也真的这样做的话,你是无论如果得不出答案的,因为从这道题目所给出的条件中根本无法判断出某一个人是说谎还是说真话.你这样解题,说明你把解题的目标(未知数)改变了.请你再看一下,题目问的是什么?题目并没有问“谁说谎,谁说真话”?而是在问“几个人说谎,几个人说真话?”正确的答案是不难得到的:因为B和C两人说的话正好相反,所以一定有一个人说谎,另一个人说真话;由此又可知道,他们两人不可能都说谎,所以A必定说谎.于是可知3个人有2个人说谎,有一个人说真话.

  例5 如图12—5,三根火柴棍可以组成一个等边三角形,再加三根火柴棍,请你组成同样大小的四个等边三角形.


  解:请你先不要继续往下看,自己想一想能不能用六根火柴棍组成四个同样大小的等边三角形?

  通常,很多人在解这题时,往往自己给自己多加了一个限制条件:“在平面上组成等边三角形”.但是,仔细看看,原题并没有限制你在平面上解题.由于给自己多加了一个条件,他们的思想就会被限制在平面上解题,那就无论如何也解不出来.这也是把题意理解错了的一种情况.


  但是,如图12—6所示,只要把思维从平面扩大到立体空间,你就能轻而易举找到问题的答案.

  例6 一笔画出由四条线段连接而成的折线把九个点串起来,你能做到吗?(见图12—7).


  解:先不要往下看,你先画画试试.你可能会画出类似于下面的各种各样的折线来,但你很快会发现,它们都不是符合题目要求的答案(见图12—8).


  总结一下画过的折线的特点,显然这些线段都没有超出这9个点所决定的正方形.

  再仔细看看已知条件,问题里并没有这一条限制,画线段的时候没有不让你超出这个正方形.明白了这点,就不难得到正确的答案了(见图12—9).


  回想一下开始的想法也是属于把题意理解错了的情况,但是这种错误是很不容易被自己发现的.只有在解题的过程中,通过对自己的失败的解法加以总结,再与题目中所给出的已知条件加以对照,才有可能发现自己“不自觉”的错误想法.

我要投稿